

Newton's Academy MATHEMATICS AND STATISTICS

Time: 3 Hrs.

Max. Marks: 80

1

		tructions:	:	inte E		· · · · · ·					
	-	uestion pape					o of quartic	wa agah agun	ina Tuna manka		
	1)		$\tilde{Q}.2$ contai	ns Fou	ı r very sh	ort answer ty	pe questio	ns, each carryi			
(2	2)	Section B:	Q.3 to Q. Two marks				t answer	type questions	, each carrying		
	(3) Section C: Q.15 to Q. 26 contain Twelve short answer type questions, each carryi Three marks. (Attempt any Eight)										
(4	4)		marks. (At	tempt d	ny Five)			questions, each	h carrying Four		
	5)					ulator is not	allowed.				
	(6) Figures to the right indicate full marks.										
	7)	Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.									
(8	(8) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g. (a)/(b)/(c)/(d), etc.							ect answer along			
									· · · · ·		
									orrect answer is		
((9)	Start answe		-		onsidered for	^e valualioi	1.			
()	<i>')</i>					uge.		\sim			
					SI	ECTION - A	\diamond				
						following m	ultiple cho	oice type of qu	estions:	[16]	
(i	i)	-	on of $(p \lor \sim$	q)∧ri	.s						
		(a) (~p /	$(q) \wedge r$			(b)	$(\sim p \land q)$ $(\sim p \lor q)$	v r			
		(b) (~p /	√q) ∨ ~r ∕			(d)	$(\sim p \lor q)$	$\wedge \sim r$		(2)	
		(1)									
(i	ii)	$\tan^{-1}\left(\frac{1}{2}\right) +$	$\tan^{-1}\left(\frac{1}{3}\right) =$		_· _ ·						
		π			π		π		π		
		(a) $\frac{\pi}{6}$		(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{2}$	(d)	$\frac{\pi}{4}$	(2)	
		0			5		2		4		
(i	iii)	If $ \bar{a} = 3$ and	$\frac{1}{ \mathbf{b} } = 4$, the	en valu	e of λ for	which $\bar{a} + \lambda$	\overline{b} is perper	ndicular to $\overline{a} - 2$.b is		
		9	1 1		3		16		4		
		(a) $\pm \frac{9}{16}$		(b)	$\pm \frac{5}{4}$	(c)	$\pm \frac{10}{9}$	(d)	$\pm\frac{4}{3}$	(2)	
(i	iv)	The equati	on of plane	e passi	ing throu	gh (2, −1,	3) and m	aking equal ir	tercepts on the		
	,	co-ordinate			C			0	1		
		(a) $x + y$	+ z = 1			(b)	x + y + z	= 2			
		(c) $x + y$	$+_{\rm Z} = 3$				x + y + z			(2)	
(`	The state	C ($\frac{x}{2}$	(11	6	n with Y-axis is		
()	v)	The equation	on of tangel		le curve	$y - 1 - e^2$ a	t the point	of intersection	i with i -axis is		
		(a) $x + 2$	y = 0			(b)	2x + y =	0			
		(c) $x-y$	= 2			(d)	x + y = 2			(2)	
(1	vi)	The area o	f the region	bound	led by th	e curve $y =$	sin x, X-a	xis and lines a	$x = 0, x = \frac{\pi}{2}$ is		
			. units.						2		
		(a) 2					4				

	(vii)	The differential equation of $y = c^2 + \frac{c}{r}$ is										
	(11)	λ										
		(a) $x^4 \left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} = y$ (b) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$										
		(c) $x^3 \left(\frac{dy}{dx}\right)^2 + x\frac{dy}{dx} = y$ (d) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$ (2)	(2)									
	(viii)	If the mean and variance of a Binomial distribution are 18 and 12 respectively then value of										
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)									
Q.2.	Ansv		[4]									
	(i)	(i) If the statement p, q are true statements and r, s are false then determine the truth value of $(p \rightarrow q) \lor (r \rightarrow s)$.										
	(ii)	Find the direction cosines of the vector $\hat{i} + 2\hat{j} - 2\hat{k}$. ((1)									
	(iii)	³ xlog x	(1)									
	(iv)	Write the degree of the differential equation										
		Write the degree of the differential equation $\frac{dy}{dx} + \frac{3xy}{\frac{dy}{dx}} = \cos x$ (1)	(1)									
		SECTION – B										
	-		[16]									
Q.3.		out using truth table prove that: $(q) \lor (\sim p \land q) \equiv \sim p$ (2)	(2)									
Q.4.	Q.4. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$											
Q.5.	Q.5. Find the principal solutions of $\sin \theta = \frac{1}{2}$.											
Q.6.	.6. Find k if one of the lines given by $6x^2 + kxy + y^2 = 0$ is $2x + y = 0$											
Q.7.	2.7. Show that the points $A(4, 5, 2)$, $B(3, 2, 4)$ and $C(5, 8, 0)$ are collinear.											
Q.8.	Q.8. Find the cartesian equation of the line passing through the point A(2, 1, -3) and perpendicular to the vectors $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$.											
Q.9.	If y =	$= \tan^{-1}\left(\frac{8x}{1-15x^2}\right) \text{ then find } \frac{dy}{dx} . $	(2)									
Q.10	. Eval	$tate: \int \frac{1}{25 - 9x^2} \mathrm{d}x \tag{2}$	(2)									
Q.11	Q.11. Evaluate: $\int_{-3}^{3} \frac{x^3}{9-x^2} dx$											
Q.12. Find the area of the region bounded by the curve $y = x^2$ and the line $y = 9$.												
Q.13	Q.13 . A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.											
Q.14		meeting 70% of the members favour and 30% oppose a certain proposal. A member is selected adom and we take $X = 0$ if he opposes, and $X = 1$ if he is in favour. Find $E(X)$ and $Var(X)$. (2)	(2)									

SECTION – C

SECTION – C						
Attempt any EIGHT of the following questions:	[24]					
Q.15. Examine whether the statement pattern $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ is a tautology, contradiction or contingency.	(3)					
Q.16. In $\triangle ABC$, with usual notations prove that $a^2 = b^2 + c^2 - 2bc \cos A$.	(3)					
Q.17. In $\triangle ABC$, $A = 45^{\circ}$, $B = 60^{\circ}$, then find the ratio of its sides.	(3)					
Q.18. Find the volume of the tetrahedron whose vertices are A(-1, 2, 3), B(3, -2, 1), C(2, 1, 3) and $D(-1, -2, 4)$.	(3)					
Q.19. Find the angle between two lines: $\bar{\mathbf{r}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ and $\bar{\mathbf{r}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda'(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	(3)					
Q.20. Find the vector equation of the plane passing through the points A(-2, 7, 5) and parallel to the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.	(3)					
Q.21. Find the derivative of $\cos^{-1}x$ w.r.t. $\sqrt{1-x^2}$.	(3)					
Q.22. If $f(x) = 3x + \frac{1}{3x}$ find the values of x for which function $f(x)$ is decreasing.	(3)					
Q.23. Evaluate: $\int e^{\sin^{-1}} x \left(\frac{x + \sqrt{1 - x^2}}{\sqrt{1 - x^2}} \right) dx$	(3)					
Q.24. Solve the differential equation $(x + 1) \frac{dy}{dx} - 1 = 2e^{-y}$. Also find particular solution when						
y = 0, x = 1.	(3)					
Q.25. Find expected value and variance of X, where X is number obtained on the uppermost face when a fair die is thrown.	(3)					
Q.26. It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles 9 articles are defective?	(3)					
SECTION – D						
Attempt any FIVE of the following questions:	[20]					
Q.27. Solve the following system of equations by method of inversion. x + y + z = -1, y + z = 2, x + y - z = 3.	(4)					
Q.28. $\triangle OAB$ is formed by the lines $x^2 - 4xy + y^2 = 0$ and the line $2x + 3y - 1 = 0$. Find the equation of the median of the triangle drawn from origin O.	(4)					
Q.29. If \bar{a} , \bar{b} , \bar{c} are three non co-planar vectors, then prove that any vector \bar{r} in the space can be uniquely expressed as a linear combination of \bar{a} , \bar{b} , \bar{c} .	(4)					
Q.30. Solve the following L.P.P. graphically Maximize $z = 4x + 3y$ Subject to $3x + y \le 15$, $3x + 4y \le 24$,	(+)					
$x \ge 0, y \ge 0$	(4)					
Q.31. If $y = f(x)$ is a differentiable function of x on interval l and y is one-one, onto and $\frac{dy}{dx} \neq 0$ on l. Also if $f^{-1}(y)$ is differentiable function on $f(l)$ then prove that: $\frac{dx}{dx} = \frac{1}{1}$ where $\frac{dy}{dx} \neq 0$						
if $f^{-1}(y)$ is differentiable function on $f(l)$ then prove that: $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$ where $\frac{dy}{dx} \neq 0$						
Hence find the derivative of the inverse of function $y = 2x^3 - 6x$.	(4)					

3

Practice Paper-3

(4)

(4)

Q.32. Prove that:
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + c.$$

Q.33. The profit function p(x) of a firm selling x items per day is given by p(x) = (150 - x) x - 1625. Find the number of items the firm should manufacture per day to get maximum profit. Also find the maximum profit.

Q.34. Evaluate:
$$\int_{0}^{a} \frac{1}{x + \sqrt{a^2 - x^2}} dx$$
 (4)

